合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 誘導(dǎo)期測(cè)定法研究NaCl的添加對(duì)碳酸鋰固-液界面張力等成核動(dòng)力學(xué)參數(shù)影響——過(guò)飽和度的計(jì)算
> 3種常見(jiàn)醇類(lèi)燃料甲醇、乙醇、正丁醇噴霧特性與表面張力的關(guān)系(一)
> 基于表面張力儀等研究常用農(nóng)藥和表面活性劑在辣椒葉面的潤(rùn)濕能力——結(jié)果與分析、結(jié)論
> 粉末涂料的涂裝成膜時(shí),與表面張力有何關(guān)系?
> 黃原膠對(duì)泡沫溶液泡沫性能、表面張力的影響(一)
> 4種增效助劑對(duì)煙草常用化學(xué)農(nóng)藥表面張力的影響
> 強(qiáng)紫外線輻射對(duì)減縮劑抑制水泥石干縮變形效果研究(二)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(二)
> 為什么不能用清水洗碗?
> 單純陰離子-非離子表面活性劑在不同的礦化度下的界面張力
推薦新聞Info
-
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對(duì)礦漿表面張力的影響(三)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對(duì)礦漿表面張力的影響(二)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對(duì)礦漿表面張力的影響(一)
> 長(zhǎng)慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測(cè)量及現(xiàn)場(chǎng)應(yīng)用(三)
> 長(zhǎng)慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測(cè)量及現(xiàn)場(chǎng)應(yīng)用(二)
> 長(zhǎng)慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測(cè)量及現(xiàn)場(chǎng)應(yīng)用(一)
> 液膜斷裂點(diǎn)與電壓最大值在表面張力測(cè)量中的對(duì)比研究(二)
> 液膜斷裂點(diǎn)與電壓最大值在表面張力測(cè)量中的對(duì)比研究(一)
> ?表面張力與表面張力系數(shù)測(cè)量:概念、方法與科學(xué)意義
> 微重力下二極對(duì)非均勻旋轉(zhuǎn)磁場(chǎng)控制半浮區(qū)液橋表面張力對(duì)流的數(shù)值研究(下)
基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(二)
來(lái)源: 農(nóng)藥學(xué)學(xué)報(bào) 瀏覽 1090 次 發(fā)布時(shí)間:2025-04-01
2結(jié)果與分析
2.1不同表面活性劑的表面張力
由圖2可以看出:4種供試表面活性劑的表面張力隨其質(zhì)量濃度的增加而下降,當(dāng)下降到一定值時(shí)趨于恒定。根據(jù)臨界膠束理論,表面活性劑的表面張力的降低僅出現(xiàn)在溶液質(zhì)量濃度小于臨界膠束濃度(cmc)時(shí),當(dāng)溶液質(zhì)量濃度達(dá)到cmc時(shí),表面張力表現(xiàn)為平緩下降或不變。由文獻(xiàn)報(bào)道可知,Tween-80、SDS、Triton X-100和SilwetL-77的cmc分別為3.01×10?2、2.48×10?3、1.32×10?4和8×10?4 g/mL。對(duì)照本研究結(jié)果發(fā)現(xiàn),Tween-80的最高質(zhì)量濃度并未超過(guò)其cmc值,SDS、Triton X-100和SilwetL-77的cmc值分別是1×10?3、2×10?4和5×10?4 g/mL。
圖2 4種供試表面活性劑表面張力隨其質(zhì)量濃度變化的趨勢(shì)
2.2不同表面活性劑在蘋(píng)果葉片表面的最大持液量
表1為水在不同蘋(píng)果葉片傾角下的Rm值,可以看出,生長(zhǎng)前期蘋(píng)果葉片近、遠(yuǎn)軸面的Rm值明顯高于生長(zhǎng)后期,其原因可能與葉片表面蠟質(zhì)層分布有關(guān)。有研究表明,隨著葉片的生長(zhǎng)其表面蠟質(zhì)層會(huì)不斷增厚,葉片疏水性逐漸增強(qiáng),且同時(shí)期的遠(yuǎn)軸面的Rm值高于近軸面,其原因可能是蘋(píng)果葉片遠(yuǎn)軸面附有大量絨毛,極易刺破水滴表面,使水滴侵入毛刺基地部位,起到阻止藥液流失的作用。
表1水在蘋(píng)果葉片近、遠(yuǎn)軸面的Rm值
圖3為不同質(zhì)量濃度下Tween-80溶液在蘋(píng)果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,生長(zhǎng)前、后期不同傾角下蘋(píng)果葉片的Rm值和表面張力均隨Tween-80質(zhì)量濃度的升高不斷減小。當(dāng)溶液質(zhì)量濃度接近c(diǎn)mc時(shí),表面張力基本不變,蘋(píng)果葉片Rm值也趨于恒定。
圖3 Rm及表面張力隨Tween-80溶液質(zhì)量濃度的變化
圖4為不同質(zhì)量濃度SDS溶液在蘋(píng)果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,蘋(píng)果葉片近、遠(yuǎn)軸面Rm值和表面張力均隨葉片傾角的增大而減小。當(dāng)SDS溶液質(zhì)量濃度接近和超過(guò)cmc時(shí),Rm值趨于恒定。
圖4 Rm及表面張力隨SDS溶液質(zhì)量濃度的變化
圖5為不同質(zhì)量濃度Triton X-100溶液在蘋(píng)果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。從中可以看出,不同傾角下蘋(píng)果葉片生長(zhǎng)前期近、遠(yuǎn)軸面的Rm值和表面張力均隨溶液質(zhì)量濃度的升高而不斷減小,當(dāng)Triton X-100溶液質(zhì)量濃度達(dá)到cmc時(shí),近軸面Rm值與表面張力的變化趨于平緩,而遠(yuǎn)軸面的Rm值則出現(xiàn)大幅波動(dòng)。其原因可能與Triton X-100表面活性效率高(cmc=1.32×10?4 g/mL)有關(guān),同時(shí)溶液色散分量占比會(huì)隨溶液質(zhì)量濃度的升高而提高,而對(duì)蘋(píng)果葉片遠(yuǎn)軸面表面自由能起主導(dǎo)作用的也是色散分量,以上多重因素導(dǎo)致遠(yuǎn)軸面的Rm值產(chǎn)生波動(dòng)。蘋(píng)果葉片生長(zhǎng)后期Rm與表面張力隨溶液質(zhì)量濃度的變化與生長(zhǎng)前期相似。
圖5 Rm與表面張力隨Triton X-100溶液質(zhì)量濃度的變化
圖6為不同濃度SilwetL-77溶液在蘋(píng)果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,當(dāng)溶液質(zhì)量濃度低于cmc時(shí),蘋(píng)果葉片生長(zhǎng)前、后期遠(yuǎn)軸面的Rm值和表面張力均隨溶液質(zhì)量濃度的降低而減小。此外,蘋(píng)果葉片生長(zhǎng)后期近軸面只有在30°傾角時(shí)的Rm值與表面張力隨溶液質(zhì)量濃度的提高而減小,60°傾角和90°傾角時(shí)Rm值隨溶液濃度變化不大。蘋(píng)果葉片生長(zhǎng)后期遠(yuǎn)軸面Rm值和表面張力隨溶液濃度的變化與生長(zhǎng)前期基本一致。
圖6 Rm值及表面張力隨Silwet L-77溶液質(zhì)量濃度的變化
以上結(jié)果表明,蘋(píng)果葉片生長(zhǎng)前期近軸面的Rm值高于生長(zhǎng)后期,且在同一生長(zhǎng)期,蘋(píng)果葉片遠(yuǎn)軸面的Rm值遠(yuǎn)高于近軸面。此外,蘋(píng)果葉片的Rm值隨葉傾角的增大而減小。





