合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 含氟防水防油劑的基礎理論知識分享
> LB制膜的應用領域、LB膜的制備方法、轉移與光照
> ?發(fā)泡材料配方對表面張力的影響
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(二)
> 表面張力對龍泉青瓷梅子青釉熔體表面形狀、燒成制品外觀質量的影響(二)
> 鼠李糖脂生物表面活性劑在液-固界面上的潤濕改性微觀機制研究(三)
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規(guī)律(二)
> 泡沫酸液表面張力調控與無機礦物溶蝕解堵特性研究(四)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對礦漿表面張力的影響(一)
> PG木質素活性劑增產(chǎn)機理、選井條件、應用效果
推薦新聞Info
-
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對礦漿表面張力的影響(三)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對礦漿表面張力的影響(二)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對礦漿表面張力的影響(一)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應用(三)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應用(二)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應用(一)
> 液膜斷裂點與電壓最大值在表面張力測量中的對比研究(二)
> 液膜斷裂點與電壓最大值在表面張力測量中的對比研究(一)
> ?表面張力與表面張力系數(shù)測量:概念、方法與科學意義
> 微重力下二極對非均勻旋轉磁場控制半浮區(qū)液橋表面張力對流的數(shù)值研究(下)
新型助排劑配方組分、對表/界面性能的影響及助排效果(二)
來源:西安石油大學學報(自然科學版) 瀏覽 917 次 發(fā)布時間:2025-06-27
2結果與討論
2.1助排劑組成
本研究的目的是獲得具有低表/界面張力且與巖石達到近似于中性潤濕的助排劑。首先,需要選擇表面活性劑。表面活性劑溶液達到臨界膠束濃度(cmc)后的表面張力(γcmc)是該表面活性劑溶液能夠獲得的最低表面張力。根據(jù)常見表面活性劑的γcmc數(shù)據(jù),氟表面活性劑能夠使水溶液達到更低的表面張力。因此,在新型助排劑中將選用合適的氟表面活性劑以降低溶液的表面張力。其次,選擇潤濕性改變劑。要達到與巖石接近中性潤濕,需要調節(jié)助排劑在巖石表面的吸附作用,以改變巖石表面的性質使助排劑體系與巖石潤濕接觸角在75°~105°間(90°±15°)。此外,由于氟表面活性劑和潤濕性改變劑一般只能使油水界面張力降低到1 mN/m以上,因此要借鑒化學驅提高采收率中能夠與原油達到超低界面張力的表面活性劑的選擇方法,復配合適的碳氫表面活性劑以獲得能夠同時降低界面張力的助排劑體系。
圖1為3種氟表面活性劑的表面張力曲線。從圖1可以看出,隨著氟表面活性劑濃度的增加,溶液表面張力迅速下降,當濃度達到臨界膠束濃度(cmc)后,隨著濃度的增加,表面張力趨于穩(wěn)定。3種氟表面活性劑FC-XF、FC-100和FC-H水溶液的cmc分別為0.001%、0.003%和0.005%,最低表面張力γcmc分別約為19、19.5和22.5 mN/m。因此,兩性氟表面活性劑FC-XF比2種非離子型氟表面活性劑具有更強的降低表面張力效率(低cmc)和能力(低γcmc),而且兩性型氟表面活性劑也不存在非離子型表面活性劑在更高溫度下氧乙烯基團失去親水性而不溶于水的問題。因此選擇FC-XF作為助排劑中的氟表面活性劑。
圖1氟表面活性劑溶液的表面張力
圖2為Ⅱ型潤濕性改變劑質量分數(shù)與巖石的接觸角之間的關系。從圖2可以看出,隨著Ⅱ型潤濕性改變劑質量分數(shù)的增加,接觸角由55°逐漸增大,當加入0.2%Ⅱ型潤濕性改變劑時接觸角可達到83°,繼續(xù)增加濃度接觸角略有減小,但都大于75°。
圖2Ⅱ型潤濕性改變劑質量分數(shù)與巖石接觸角關系曲線
圖3為典型的碳氫表面活性劑/潤濕性改變劑混合溶液與原油的動態(tài)界面張力曲線。從圖3可以看出,0.1%C12CON+0.2%Ⅱ型潤濕性改變劑、0.1%GL6/SDS(混合質量比為4∶1)+0.2%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力分別為2.573 2 mN/m和0.063 5 mN/m,但0.1%APS+0.2%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力可以達到0.024 6 mN/m。而且,0.1%APS+0.1%Ⅱ混合溶液與原油的界面張力也低于0.05 mN/m,0.1%APS+0.5%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力甚至可以達到小于0.003 5 mN/m的超低界面張力。
圖3碳氫表面活性劑/潤濕性改變劑混合溶液與原油的動態(tài)界面張力曲線
綜合上述研究結果,選擇氟表面活性劑FC-XF、Ⅱ型潤濕性改變劑和兩性表面活性劑APS復配制備高界面活性劑助排劑。
2.2助排劑配方確定
將不同質量分數(shù)的氟表面活性劑FC-XF、Ⅱ型潤濕性改變劑和兩性表面活性劑APS復配可以獲得不同的助排劑體系。各組分的含量不同,所獲得的助排劑溶液的表/界面張力和對巖石潤濕角不同。為了獲得最優(yōu)配方,實驗考察了當Ⅱ型潤濕性改變劑質量分數(shù)為0.2%,分別改變FC-XF和APS的質量分數(shù)時對助排劑體系表/界面張力和接觸角的影響。這不僅可以分析助排劑組分對表/界面性能的影響,而且有利于助排劑的配方優(yōu)化。
圖4為Ⅱ型潤濕性改變劑質量分數(shù)為0.2%,APS質量分數(shù)為0.1%時氟表面活性劑FC-XF濃度對體系表面張力、界面張力和接觸角的影響。
圖40.1%APS+0.2%Ⅱ型潤濕性改變劑+FC-XF混合體系表面張力、界面張力和接觸角隨FC-XF質量分數(shù)的變化
從圖4(a)中可以看出,隨著FC-XF質量分數(shù)由0.005%增加到0.050%,體系的表面張力由25.6 mN/m降低至20.8 mN/m,界面張力則由0.028 6 mN/m升高到0.212 3 mN/m。這是因為助排劑中各組分在表/界面上發(fā)生協(xié)同和競爭吸附,F(xiàn)C-XF濃度增加使得表/界面中FC-XF的吸附量增加,因而降低表面張力的效率增加,同時使得降低界面張力組分的吸附量減小,因而界面張力升高。
從圖4(b)中可以看出,隨著FC-XF質量分數(shù)由0.005%增加到0.050%,混合體系與巖石的接觸角由87°降低至73°,γcosθ由1.3 mN/m上升到6.3 mN/m。這是由于吸附Ⅱ型潤濕性改變劑和APS使得巖石表面由水濕轉變?yōu)橹行詽櫇?接觸角>87°),更易于吸附FC-XF的碳氟鏈而使親水性頭基在巖石表面暴露,增加了巖石表面的親水性,因而隨著FC-XF質量分數(shù)的增加接觸角減小。





